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On exact solutions of the Schrodinger equation 

M Znojil 
Nuclear Physics Institute, Czechoslovak Academy of Sciences, 250 68 R e i  near Prague, 
Czechoslovakia 

Received 14 April 1982, in final form 10 August 1982 

Abstract. In the one- and three-dimensional Schrodinger equation, a broad class of the 
regular potentials (rational functions of the rational powers of r )  may admit exact bound- 
state solutions in the generalised harmonic-oscillator elementary form $ ( r )  = 
r D  x polynomial x exp(-polynomial). The necessary and sufficient conditions of this 
phenomenon are derived in the form of coupled algebraic equations. The methods of 
their solution and a few examples are discussed. In particular, the well known Coulombic 
and oscillator solvability and the similar recent results of Singh er al and Whitehead er a[ 
are reproduced as the two simplest special cases. 

1. Introduction and summary 

Recently, the standard quantum mechanical applications of the radial Schrodinger 
equation 

( l . l u )  

were extended even to quark physics where the simple non-relativistic models ( 1 . 1 ~ )  
with V ( r )  = c1rmr V ( r )  = c l r e  +c2rp ,  etc exhibit both a reasonable theoretical back- 
ground and a surprising phenomenological success (cf Quigg and Rosner 1979). We 
may add the inverse polynomial components to V ( r )  (Flessas 1981), and apply ( 1 . 1 ~ )  
also as the Klein-Gordon equation for a relativistic particle (Bjorken and Drell 1964) 
or as the Fokker-Planck equation for a laser (Haken 1970). Finally, the various 
special cases of the general class of the elementary potentials 

(1.16) 

in ( 1 . 1 ~ )  may prove to be useful in field theory, e.g. as the nonlinear interaction 
models in zero dimensions (Kaushal 1979) or in some of its lattice formulations (Fulco 
and Masperi 1979). 

It is well known that the radial Schrodinger equation (1.1) must be solved numeri- 
cally in general. The complete and non-numerical solution exists in a closed form for 
a few forces only-Newton (1965) enumerates just the r - 4 ,  r - ' ,  r 2  and r m  (square 
well) potentials. There is also a broad class of the exactly solvable (so-called Bargmann) 
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potentials derived from the elementary T-matrices and defined at one fixed I only 
(Newton 1965). Alternatively, in accord with the simple method mentioned, e.g., by 
Morse and Feshbach (1953, p 1670), we may start directly from some elementary or 
special-function bound state and derive the corresponding partially solvable potential 
V ( r )  by mere differentiation. In the physical context, such a 'reverted' solution 
philosophy is not unusual (cf Risken and Vollmer 1967); it may enable one to start 
off also a perturbative treatment of the 'neighbouring' potentials (Killingbeck 1978, 
1980, Aharonov and Au 1979) and it  represents a fruitful methodological standpoint 
in general. 

Our present aim is a completion of the latter type of construction as performed 
recently by Singh et a1 (1978, 1979), Flessas (1979, 1981), Flessas and Das (1980), 
Magyari (1981), Varma (1981), Whitehead et a1 (1982) and Znojil (1982) for various 
particular potentials of the class (1.16). In brief, we shall search for all the bound 
state solutions to (1.1) which have the elementary form 

$ ( r )  = r' e-P" 'Q(r)  (1.2U) 

where P and Q are polynomials of the same type as Vi's in (1.16). We believe that 
the exact solutions to the general equation (1.1) deserve a systematic description at 
least in the discrete spectrum case ( E <  V ( m ) ) ,  since we may interpret (1.16) with 
a = 1 as a general Pad6 approximation to an arbitrary regular force V ( r ) .  

Before going into details, we may notice that the simple change of variables 

(1.3) l l -w l /2uJq  (x - ) ,  r w  = x ,  = x w = 1 , 2 , .  . . , 

converts the general problem (1.1) written in the modified notation 

d2 2(9+ 1) H Cp=l ( U ~ / W ~ ) X ~ ~ ~ ~ ' / ' ' '  (-2. X 2 +T+ X 
x;=o a,x 2 ! / W  

gw = - i C p ( X ) ,  2 = 0 , 1 ,  . . .  , 2 q z w ; g 2 , > 0 ,  
W 

(1.4) 

to its 'canonical' form 

D D 

A ( r ) =  1 alr2'-2, D ( r )  = 1 alr2' > 0, r 2 0 ,  (1.5) 
, = 1  1=0 

classified by the two integers p 2 0  and q 3 1 and by the angular momentum 13 0. 
Hence, we shall only consider equation (1.5) in what follows. Concerning the back- 
ward transformation (1.5) + ( l . l ) ,  we would like to emphasise that by (1.3), the 
regularity of potential in the origin is preserved. We see that H +2(2+ 1) = 
-$+(h+1(1+1)+ i ) /w2>- i  if and only if h + l ( l + l ) > - $ .  Of course, the solution 
$ ( r )  which is regular or irregular in the origin becomes transformed into the respective 



O n  exact solutions of  the Schrodinger equation 281 

regular or irregular function ~ ( x )  and vice versa. In (1.3), we must also require that 
w s 2q,  in order not to lose the energy term E = -g,/w in (1.4). For the different 
U ’ S ,  the physical energy is represented by the different constants g,, but this cannot 
change the discrete character of the spectrum. Indeed, V ( x )  with w <2q remains a 
confining force due to the positivity of g2q.  In the ‘exceptional’ w =2q cases where 
V(c0) = 0 and g 2 q  = -w2E,  our condition gZq > 0 reflects merely the elimination of the 
continuous part of the spectrum. As an example, we may recall a known equivalence 
of the harmonic oscillator to the discrete Coulomb states ( p  = 0, q = 1, w = 1,2) .  

2 

Our main results may be summarised as follows. 
( i )  In accord with $ 2, the bound states of the generalised harmonic oscillator form 

( 1 . 2 ~ )  where g > and P and Q are polynomials in r2 ,  

(1.2b) 

may exist for each p and q in (1.5). The choice of couplings in V ( r )  must be restricted 
in a ‘self-consistent’ way to guarantee the termination (polynomiality) of Q ( r ) .  In 
this way, each ‘solvable’ differential equation (1.1) may be converted into coupled 
‘self-consistency’ algebraic equations. Vice versa, these equations describe completely 
the class of the ‘solvable’ V ‘ s  and their elementary 4’s. For the p = 0 subclass of V ’ s ,  
similar equations were derived by Magyari (1981). Besides the trivial p + q  = 1 case, 
the elementary subset of solutions 4 for any V is of course always incomplete. 

(ii) In the first two non-trivial ( p  + q  = 2) cases, the ’solvable’ V ’ s  were studied 
and described in detail by Singh et a1 (1978, construction of the p = 0, g = 2 multiplets 
of 4 ’ s )  and by Whitehead et a1 (1982, properties of the p = q = 1 multiplets of 
Sturmians). For p + q  >2,  the algebraic self-consistency starts to couple both the 4 
and V together. Our most interesting result is an algebraic elimination of the V 
dependence from the equations ( 5  3). From the formal point of view, this resembles 
the inverse spectral transformation 4 + V available for the scattering states, and 
determines all the solvable V ’ s  from a complete set of the ‘self-consistent’ ansatzes 
for 4‘s. From the practical point of view, this nonlinear scheme is well suited for the 
applications since it is simple for any V and simple ~ ’ s .  It also generalises some 
recent separate p = 0, g > 2 constructions (Znojil 1982). 

(iii) Contrary to the preceding result, the complementary algebraic elimination of 
4 is rather formal ( $ 4 ) .  For the highly excited or complicated $’s, we therefore 
recommend employing the original self-consistencies and computing V and 4 simul- 
taneously, by iterated diagonalisation accompanied by the p + q -2 linear constraints. 
The two forms of such a method are described in detail in $ §  4.1 and 4.2.  For p + q  = 2, 
they coincide with the algebraic methods of Singh et a1 (1978) and Whitehead et a1 
(19821, respectively. The latter method is illustrated on the q = 1, p = 2 example in § 5 .  

The present systematic discussion of the exactly solvable Schrodinger equations 
may extend the class of the simple physical models (particular states in the multiple 
well or screened Coulomb potentials etc). They may find applications also in laser 
theory (reconstruction of V, cf Risken and Vollmer 1967), perturbation theory (tests 
of convergence) and in computation practice (with V represented by a Pade 
approximant). Sometimes, the infinite-series limit in the polynomials may even inspire 
the exact and complete analytic solution of the Schrodinger eigenvalue problem (Znojil 
1981). 
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2. Exact solvability of the Schrodinger equation 

We shall start by three lemmas which result from an application of the Morse-Feshbach 
method in the present context. 

Lemma 1. If one particular bound state + ( r )  has the form (1.2), the corresponding 
Schrodinger equation must have the form (1.5) with some p N and with 

(2.1) 1 2  1 2  h = ( ( + - 5 )  - ( l + z )  . 

Proof. Let us put 
1 

U = 5 + [ ( I  + + ) 2  + I = O ,  1, .  , . . 
An insertion of (1.2) into (1 .1~)  gives 

~ ( r )  = E  - 1(1+  l ) r - 2 +  (+"))-'4''(r) 
= E  + hr-2  + (P'(r))2 -2(+r-'P'(r) - P"(r) 

+ (Q(" ) - ' [Q ' ' ( r )  + 2 ( ~ r - '  -P'(r))Q'(r) l ,  
+" ( r )  = d2+(r)/dr2,  . . . , (2.3) 

an inspection of which completes the proof. 

Lemma 2. The polynomial P ( r )  in (1.26) determines q couplings in the asymptotically 
dominant part of V(r) and vice versa. 

Proof. From the comparison of (1.5) with (2.3) at r2', r 2 q + 2 , .  . . r 
dependence of V in the simple form 

4q-2  , we get the P 

(2.4) 

An equivalent recurrent prescription 

specifies the unique V-dependence of P 

Lemma 3. The fixed choice of the minimal p in (1.5) implies that the polynomial 
Q ( r )  in (1.26) must have the factorised form 

Q ( r )  = R(r)D(r) ,  
M 

~ ( r )  = C plr2', M = N - p z O ,  
i = O  

(1.2c) 
P o =  y o l f f o f  0 , .  * . , P M  = Y N / C Y p  f 0.  

Proof. The O(r24-2)  part of (2.3) reads 

a 
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where the definition 
m - l  

4 ~ m = g m + ( 2 m + 2 ~ - 1 ) ~ m -  1 PiPm-1, m = 1 , 2  , . . . ,  q, (2.7) 
1 = 1  

reflects the one-to-one correspondence between B ( r )  in (2.61 and the ‘P-independent’ 
polynomial part of V(r) .  The rest of (2.6) represents the polynomial A ( r ) Q ( r )  as a 
multiple of D(r) .  By definition, A and D have no non-trivial common divisors, so 
that we may put Q = DR without loss of generality. 

Now, we are prepared to prove 

Theorem 1. The radial Schrodinger equation with the rational potential (1.5) admits 
the exact solution 4(r) in the elementary form (1.2) if and only if the M + 2q + 2p + 1 
constants in V ( r )  and $ ( r )  satisfy the M +q + p  coupled algebraic relations 

min(m.p+q 1 min(q,i) 

I =max(O,m-M) 1 pm-l(a1-zmm+1al+2 k =max( l , i  1 - p )  [ (m-k)pk+~k]a~- t )=O,  

Zmm+1 =Zmm+l(~)=m(2m +2a-1),  m = 1 , 2  , . . . ,  M + p + q ,  (2.8) 
= = . . . = ap+l = . . . = 0.  

Proof. In accord with the preceding lemmas, we have to define U by (2.2), p’s by 
(2.5) and 6’s by (2.7). Then we may denote R” = d2R(r)/dr2 etc and rewrite (2.6) in 
the polynomial form 

D R “ + 2  D’+ED-P’D R = O  (2.9) 

2m-2 - 
i r  

or, symbolically, ZEzf ’q sm-lr 
we get 

- 0. From the dominant  requirement^^+,+^-^ = 0, 

8, = -(M +p)Pq .  (2.10) 

This definition coincides with the m = M + p  +q item of (2.8). The remaining items 
of (2.9) read sm-, = O  and generate the explicit requirements (2.8) for m = 
1,2,. . . , M + p  + q  -1. 

The theorem is a direct generalisation of Magyari’s p = 0 result (1981), and equation 
(2.8) restricts the freedom in our choice of U or h, a’s, a’s,  p’s and 6’s or g’s and of 
p’s. When we assume that the type of the potential (integers p and q )  is fixed, the 
p + q  + 1 values U, a l ,  a2,  . . . , a p  and P I ,  p2,  . . . , p, may be treated as independent 
variables carrying the physical input information about the threshold behaviour of 
V(r ) ,  about its poles (not lying on the real axis!) and about its asymptotic behaviour, 
respectively. As a consequence, besides the simple explicit definition (2.10) of g, (a 
fixed function of gq+l, gq+2,. . . , g2,, to be ignored as trivial), the first M + p  + 
q - 1 coupled equations in (2.8) have to determine the values of 
SI, S Z ,  . . . , S,-I, a l ,  a 2 ,  . . . , up and P I ,  p 2 ,  . . . , pM ( p o  is merely an irrelevant normalisa- 
tion constant). In this way, the solvability requirement (2.8) fixes R(r)  in (1.2) and 
the O(r2p+2q-2 ) part of the polynomial V ( r ) D ( r ) .  

When h = I  = 0, we may extend our conclusions immediately also to the one- 
dimensional interpretation of the Schrodinger equation (1.5) with r E (-CO, 03). For 
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3 

this purpose, it is sufficient to complement the present odd-parity U = 1 solutions by 
the analogous even-parity (T = 0 series, which would be unphysical (irregular) in the 
present three-dimensional interpretation of (1.5). 

3. Self-consistent construction of an elementary ansatz 4 ( r )  

Assuming that the only uncoupled component (2.10) of (2.8) is satisfied by our choice 
of g,, we may rewrite the algebraic self-consistency equations (2.8) in the form 

\ .  . ./ 

where the matrices 

/ a 0  0 . .  
c y 1  a0 0 * . .  

ap ap-l . . .  
. . .  &=I 0 a p  . . .  
. . .  

a1 0 . . .  \ 

(3.2) i * . .  
a p  a p - l  . . . , 
0 up . . .  

* . .  

commute and the more complicated P-  and a-dependent Hessenberg matrix X reads 

x=- 0 0 2 2 3  0 
2 lI0 z12 O 

\ . . .  
0 . .  

. . .  i 
' P I  0 . . .  0 * . .  

2P2 2/31 0 . . . . . .  
3P2 3Pi . . .  . . .  

. (3.3) 

. . .  (M+p- l ) /3 ,  . . .  
. . .  * . .  
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Hence, we get 

Lemma 4. The mth row of (3.1) is satisfied identically whenever m z M + p  +q .  

Proof. The  band matrix acts on the vector with only the first component different 
from zero, so that (3.1) is satisfied for m > M + p  +q.  The m = M  + p  + q  item is 
equivalent to (2.10). 

Lemma 5. The first p rows of (3.1) define a ' s  in terms of p ' s  and 6's by the formula 

(3.41 

where I" '  denotes an auxiliary i-dimensional unit matrix. 

Proof. Since pa # 0, we may multiply (3.1) by p * - ' ,  which corresponds to an addition 
of the linear combination of the first m - 1 rows to the mth one. 

Lemma 6. The last q - 1 non-trivial rows of (3.1) define 6's in terms of p ' s ,  

* . .  

0 . . .  
0 . . .  

I 1 

Proof. Only the first M + p  rows of (3.1) depend on a 's .  W e  may eliminate them by 
the multiplication of (3.1) by the auxiliary infinite matrix x ( P + M '  from the left, where 
x , k  = C S , + ~ , ~  (=Kronecker delta here!), j ,  k = 1, 2, . . . . Since a p  # 0 and pM # 0, the 
upper-triangular matrix xi '+"'@ = I r ' P ' & r ' M '  p* is invertible and the explicit formula 
(3.5) follows from (3.1). 

( 1 1  

The formula (3.5) follows also from (3.1) when multiplied by x'')~rTT(plp*-l. The 

(3.6) 

may be verified by partitioning p* into ( i  X i)-dimensional blocks. Hence, (3.1) becomes 

underlying identity 

P*A I l  Ib - 1 = Ir I I 1 - ( I  ' p*I I"  ' ( I "  I 1)- 11" I 
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equivalent to the pair of definitions (3.4), (3.5) and to the M nonlinear equations 

[ p w ~ * ! P l - *  t p I I IM);I( p '(1 ( p 161 I p 1 )  - 11 I p I 

/ 

(3.7) 

We may notice that for M = 0, the normalisation po is arbitrary so that we are left 
only with the explicit definitions (3.4) and (3.5) of the 'solvable' potential V. For 
p = q  = 1, this reproduces the first exact solutions found by Flessas (1981). In the 
general M 3 0 case, we may formulate 

Theorem 2. Provided that cr, a ' s  in D ( r )  and p's in P ( r )  are treated as 1 + p  + q  free 
parameters, the formula (1.2) represents an exact bound-state solution to the radial 
Schrodinger equation (1.5) if and only if the binding energy and the 'solvable' potential 
V are explicitly defined by the equations (2.1), (2.4), (2.7), (2.10), (3.4) and (3.5) and 
the M + 1 coefficients po,  p l ,  . . . , pM satisfy the M nonlinear algebraic equations 

P o  P o  
+ * I  .M 'p^IIM I ( *  I M '6 ) ~ I]* I P 1%; [;.J = * I p )  I IM' ; l ' p ' ( r ' p ' p * r ' p " , - ' I ' p ' ~ ~  

IPMI 
(3.8) 

Proof. It is sufficient to show that the third term in (3.7) is equivalent to the second 
term in (3.8), but this follows from the partitioning into ( M  x M)-dimensional blocks. 

With M = 1 and 2 and p = 0 (i.e. = I '= ' ,  1'" = 0) the special cases of (3.8) may 
be found elsewhere (Znojil 1982). The general formula (3.8) is a set of polynomial 
equations since all the matrices may be considered finite in effect. Moreover, 
and I"'; are triangular so that all the algebraic matrix inversions are straightforward 
(see example in the appendix). 

4. The self-consistent specification of V ( r )  

In the preceding section, we have reduced the original implicit specification of the 
elementary pair of V ( r )  and $ ( r )  to the implicit specification of $ ( r )  alone. This 
procedure loses its merits when M > p + q .  In such a case, we have to proceed as 
follows. 

First, we write equation (2.8) or (3.1) in the form of an overcomplete system of 
linear equations for p's ,  

, 2 1 1  2 1 2  0 * . .  0 

0 . . .  0 Zp+qTM 1 M Z p + q T M - l  M T l  / 
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Here, the finite Hessenberg matrix Z = i -I""a* = ( 2 x 4  - ($8 - $ ) p f & 1 1  

has p + q  + 1 diagonals. From the first M rows of (4 .1)  we obtain the compact 
determinantal definition 

of p ' s  as functions of the couplings. 

of the rows and columns. As a consequence, the last M rows of ( 4 . 1 )  imply 
The matrix Z has a shape symmetric with respect to the simultaneous reordering 

P M 

Z K - m - 1  W + l  

Z K M + 1  

(4.3) K = M + p  t q  - 1, m = 1 , 2 , .  , . , M .  

The explicit V-dependence of CL ((4.2) or 14.3)) is a formal counterpart to the explicit 
definitions (3 .4 )  and (3.5) of V = V(I+!J). Unfortunately, an insertion of (4.2) or (4.3) 
into (4.1) does not simplify the general result of 

Theorem 3. The radial Schrodinger equation (1.5) has an elementary solution (1.2) 
if and only if g ,  is defined by (2.10) and the couplings a l ,  a2, . . I , a p  and g l ,  g2 ,  . . . , gq-l 
satisfy the p + q - 1 coupled algebraic equations 

det Z"' = 0, i = 1 , 2  ) . . . ,  p + q - 1 ,  (4.4) 

where {Z'"} denotes any set of the p + q - 1  independent [ ( M + l ) x  
( M  + 1 )]-dimensional submatrices of Z. 

Proof. This is trivial-equations (4.4) are the standard solvability conditions for 
equation 14.1). 

Theorem 3 may be illustrated on the p = 0, q = 2 example of Singh et a1 (1978) 
where the only unknown parameter 6 ,  corresponds to the physical energy and lies 
on the main diagonal of the tridiagonal matrix Z"' which may be symmetrised. Hence, 
there always exists a multiplet of the polynomial eigenstates (I, provided that the 
underlying sextic anharmonic potential V ( r )  = g 2 r 2  + g 3 r 4  + g4r6  satisfies the only self- 
consistency requirement (2.10), i.e. 

g2 = g;/4g4 - ( 4 M  + 2 a  + 3)v/g,. (4 .5)  

4.1. The constrained diagonalisation 

For p + q > 2, the determinantal equations (4 .4 )  are coupled and must therefore be 
treated by purely numerical methods. Of course, the convergence and even the 
existence of a solution are difficult to prove. Let us describe here one of the most 
natural computational schemes based on a combination of the algebraic results of 
$8 3 and 4 which still preserves the formally linear character of the coupled equations. 
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The main idea is simple-we preserve, say, the first p - 1 rows of (3.4) or (4.1), 

. . .  i 

, . . .  

(4.6) 

(4.7) 

and specifies the last unknown coupling in a self-consistent way as an eigenvalue u p  
(zero of det Z'P'-cf (4.4)). 

In practical computations, we have to start, e.g., from an initial (trial) set of 
couplings a l ,  . . . , up- l  and S1,, . . , 6q-1 and define the left-hand side in (4.8). If the 
real eigenvalue up does not exist, we have to try another initialisation. From the 
corresponding eigenvector (po ,  . . . , p M ) =  and (4.6), (4.7), we then get a new trial set. 
If the iteration converges, we obtain the solution. 

As an example, we may recall the p = q = 1 potential V ( r )  = r2+Ar2 / (1  + g r 2 )  as 
considered by Mitra (1978), Kaushal(l979) and solved in the present spirit by Flessas 
(1981), Whitehead et a1 (1982) and Varma (1981). To preserve their notation, let us 
put CT = 0 or 1, a l  = -A/2g and c y l  = g. Then, the energy is fixed by (2.10), there are 
no restrictions (4.6) and (4.7), and equation (4.8) has the simple form 

g + 2 M + 2 - a l  1 0 * . ,  0 

0 2g (M - 1) . * .  0 

0 . . ,  0 2g ( M + 1 ) ( 2 M + l ) g + 2 - a l  p,,, 

. . .  0 ][,q (4.9) 
2 gM 6 g + 2 M - a 1  6 0 

* . .  

It permits an easy symmetrisation of the matrix 2"' and defines therefore the M + 1 
real and lion-zero eigenvalues L~ = -h/2g. In contrast to Singh's oscillator, they 
correspond to different potentials. Due to the factorisation D x R of 0, the present 
form of the result is slightly simpler than the original one as given by Whitehead el 
a1 (1982) where also the existence and positivity of ai's was first proved. 

4.2. Transition to the harmonic-oscillator basis 

Being inspired by Whitehead et a1 (1982) and by their alternative treatment of equation 
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(4.9), we may notice that the ansatz (1.2) has the form 

(4.10) 

where (r in) denotes a normalised eigenstate of the harmonic oscillator, 

H o l n )  = E ,  In), 

Ho = -d2/dr2 + 1(1+ l ) / r 2  + h / r 2  + p:r2. 
E ,  = P1(4n + 2~ + l),  n = 0 , 1 ,  . . . ,  

(4.11) 

When we insert (4.10) into (1.5) and employ the orthonormality of (r1n)'s we may 
repeat all the formal manipulations of the preceding paragraphs. Unfortunately, the 
resulting formulae become more complicated whenever q 3 2. 

For the particular choice of q = 1 in V(r), the transition (4.10) to the oscillator 
basis deserves special attention since the exponential factor in (4.10) (responsible for 
some complications (asymmetry) of the resulting equations) is equal to one. In the 
next section, we shall therefore illustrate the typical features of the q = 1 oscillators 
on the first non-triviai p = 2 example. The generalisation to any p > 2  is straight- 
forward. 

5. Fractionally perturbed harmonic oscillators-the p = 2 example 

Let us assume that q = 1 and p = 2 in (1.5). With the ansatz (4.10), we may write this 
equation in the form 

where yN # 0 and N 5 2 in the light of lemma 3. 

from (5.1) 
With respect to the regularity of D ( r )  and orthonormality of the basis, we obtain 

N 

[(nI(I + a 1 r 2 + a 2 r 4 ) I m ) ( ~ ,  -E )+(n I (a l  +a2r2)Im)Iym = 0, 
m = O  

n = 0 ,  1, .  . . ,NT.  ( 5 . 2 )  

We must put Nr = N + 2  since (mlr21n) and (mlr41n), m, n = 0 ,  1, . . . may be treated 
as the infinite three- and five-diagonal matrices T and T2,  respectively. Since yNil = 
yN+2  = . . . = 0, we may replace T by its truncated (MT + 1)-dimensional form with 
MT 3 N + 2. If necessary, this T may be diagonalised by an orthogonal matrix U such 
that (UTUT),k = r:&, j', k = 0, 1, . . . , MT. 

The last row of the overcomplete system ( 5 . 2 )  with n = N + 2 gives 

E = E N  (5.3) 
which reproduces simply our previous result (2.10). Similarly, we obtain the relations 

(5.4) 

with w11= ~ ~ T N + I N ,  W I Z  = ( E N - I  - E N ) ~ ~ ~ ( T ~ ) N + I  N - I ,  w21= a1 + ~ ~ T N N ,  w~~ = 

from then = N + 1 and n = N items of ( 5 . 2 ) .  Since w I 2  and "23 are non-zero (negative), 

W l l y N  + W 1 2 y N - 1 =  0, W 2 l Y N  + W22YN-1 + W23YN-2 = 0,  

2 ~ Z T N N - I  +   EN-^ - E N ) ( ~ I T N N - ~  +a2(T ) N N - ~ ) ,  and W 2 3  =  EN-^- E N ) C Y ~ ( ~ ~ ) N N - ~ ,  
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we may rewrite (5.4) in the form 

When we choose y." as an arbitrary normalisation and introduce the new yN-indepen- 
dent N-dimensional vector z ,  = g,,y,, i = 0, 1, . . . , N - 1 (g is the N-dimensional positive 
diagonal matrix such that gf, = e N  - E , ) ,  then the equations ( 5 . 5 )  fix the normalisation 
of z and specify the ratio of the components z N - 1 / z N - 2  of this new vector. 

An introduction of the new vector z is motivated by its appearance in the rest of 
(5.2), which may be given the form 

2 2 1 / 2  , z ,  =Az,, tancp =a2/a1,  A =(a1 +a21 , (5 .6 )  

provided that 

MT 

det(al  + a 2 T )  = A M T C 1  fl (cos q + r f  sin c p )  # 0. 
, = o  

(5 .7 )  

Fortunately, the latter condition is easy to satisfy since we may distinguish two cases: 
( i )  a = a2 = A = 0. Then, obviously, equation (5.2) admits only the harmonic- 

oscillator solution y ,  = jNSIN, i < N .  This may be omitted here as trivial ( p  # 2). 
(ii) a l  = A  cosq, a 2 = A  sincp with some A > O .  It may happen that cosq + 

r? sin cp = 0 for some i s M T .  Then, in some vicinity of q, it is sufficient to remove 
this random zero of (5 .7 )  by the change of the auxiliary cut-off MT. 

Due to the symmetry of the left-hand-side matrix in (5 .6 ) ,  its diagonalisation is 
standard and gives always some real eigenvalues A'" (cp ) ,  i = 1 , 2 , .  . . , N and the 
corresponding orthogonal eigenvectors zj"(cp), j = 0, . . . , N - 1; i = 1,2 ,  . . . , N, as 
functions of the parameter q. For each i, this parameter has to be fixed by the 
requirements (5.51, i.e. by the transcendental equation 

(5.8) 

which has to be solved numerically. Thus, the problem of existence of the elementary 
V and 3 is reduced to the geometric proof of the real intersection of the two curves. 
Contrary to the original diagonalisation (4.8), we obtain here also the p = 1 subset 
of solutions. 
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Appendix 

2 n  The function R ( r )  = Er=O p,r determines the zeros JZ of $ ( r )  - R ( r )  = 
pM nfl1 (r2-AL) .  In the nth excited state $ ( r ) ,  n of the A,'s are positive. When we 
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express p ' s  in terms of the new variables A,, pM- l /pM = t l = - A 1  
-A* - .  . .-AM, . . . p o / p M  = t,M = (-1)'A1A2. . . AM, the physical interpretation 
of $ ( r )  becomes easier. At the same time, the inversion of the upper-triangular matrix 
T 6 in (3.8) is also simplified, since the evaluation of determinants may be replaced 
by the decomposition formula 

I .A4 J 

which implies the compact result 

11 023 1 A I  A: A: . .  .] 11 AM A L  ...I 
A: , . .  X . . . X  0 1 AM . . .  

. . .  

. . .  
M 

5m = ~ M + ~ / n f l ~ . ~ + ~  ( A ~  -A,). 
i = 1  

A similar technique of inversion may be used also in the I ' p ) $ I ' p )  term in (3.8) or for 
~ " ' 6  in (3.5). 
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